Electricity Generation by Shewanella decolorationis S12 without Cytochrome c
نویسندگان
چکیده
Bacterial extracellular electron transfer (EET) plays a key role in various natural and engineering processes. Outer membrane c-type cytochromes (OMCs) are considered to be essential in bacterial EET. However, most bacteria do not have OMCs but have redox proteins other than OMCs in their extracellular polymeric substances of biofilms. We hypothesized that these extracellular non-cytochrome c proteins (ENCP) could contribute to EET, especially with the facilitation of electron mediators. This study compared the electrode respiring capacity of wild type Shewanella decolorationis S12 and an OMC-deficient mutant. Although the OMC-deficient mutant was incapable in direct electricity generation in normal cultivation, it regained electricity generation capacity (26% of the wide type) with the aid of extracellular electron mediator (riboflavin). Further bioelectrochemistry and X-ray photoelectron spectroscopy analysis suggested that the ENCP, such as proteins with Fe-S cluster, may participate in the falvin-mediated EET. The results highlighted an important and direct role of the ENCP, generated by either electricigens or other microbes, in natural microbial EET process with the facilitation of electron mediators.
منابع مشابه
Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12
Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemica...
متن کاملDraft Genome Sequence of Shewanella decolorationis S12, a Dye-Degrading Bacterium Isolated from a Wastewater Treatment Plant
Shewanella decolorationis is a valuable microorganism for degrading diverse synthetic textile dyes. Here, we present an annotated draft genome sequence of S. decolorationis S12, which contains 4,219 protein-coding genes and 86 structural RNAs. This information regarding the genetic basis of this bacterium can greatly advance our understanding of the physiology of this species.
متن کاملRespiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor.
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction ...
متن کاملCharacterizing the snorkeling respiration and growth of Shewanella decolorationis S12.
Microbial electrochemical snorkel (MES) reactor is a simplified bioreactor based on microbial fuel cells (MFCs) and has been suggested to be a promising approach to solve many environmental problems. However, the microbial processes in MES reactors have not yet been characterized. This study shows that Shewanella decolorationis S12 can use the conductive snorkel as direct electron acceptor for ...
متن کاملFrom red to green: the propidium iodide-permeable membrane of Shewanella decolorationis S12 is repairable
Viability is a common issue of concern in almost all microbial processes. Fluorescence-based assays are extensively used in microbial viability assessment, especially for mixed-species samples or biofilms. Propidium iodide (PI) is the most frequently used fluorescence indicator for cell viability based on the membrane permeability. Our results showed that the accumulation of succinate from fuma...
متن کامل